Размер:
AAA
Цвет: CCC
Изображения: Вкл.Выкл.
Обычная версия сайта

Archive

The editorial board of the "MSTU Vestnik" journal supports the «Open Access» policy which enables users to have free and unlimited access to scientific articles (to read, download, copy, distribute) in case the author is indicated when further quoted.

The academic periodical "Vestnik of MSTU" is available under the license Creative Commons «Attribution» (Attribution) 3.0 Unported (CC BY 3.0).


Warning: file_get_contents(http://doi.crossref.org/servlet/getForwardLinks?usr=murmansk&pwd=4_mstu&doi=): failed to open stream: HTTP request failed! HTTP/1.1 400 Bad Request in /var/www/old/sites/vestnik/php/find_ref.php on line 2

Zubova Yu.V., Namgaladze A.A.

The vibrationally excited molecular nitrogen effects by numarical modelling of the ionospheric F2-layer behaviour during major magnetic storms

PDFRead

Abstract. The GPS derived TEC disturbances before earthquakes were discovered in the last years using global and regional TEC maps, TEC measurements over individual stations as well as measurements along individual GPS satellite passes. For strong mid-latitudinal earthquakes the seismo-ionospheric anomalies look like local TEC enhancements or decreases located in the vicinity of the forthcoming earthquake epicenter. Such structures are generated in the ionosphere for several days prior to the main shock. The amplitude of plasma modification reaches the value of 30-90 % relative to the non-disturbed level. The zone of the anomaly maximum manifestation extends larger than 1500 km in latitude and 3500-4000 km in longitude. In case of strong low-latitudinal earthquakes there are effects related with the modification of the equatorial F2-region anomaly: deepening or filling of the ionospheric electron density trough over the magnetic equator. The possible physical mechanism which can cause such anomalies has been proposed. We consider that the most probable reason of the NmF2 and TEC disturbances observed before the earthquakes is the vertical drift of the F2-region ionospheric plasma under the influence of the zonal electric field of seismic origin. To check this hypothesis, the model calculations have been carried out with the use of the UAM (Upper Atmosphere Model) – the global numerical model of the Earth’s upper atmosphere. The electric potential distribution at the near-epicenter region boundary required for the electric field maintenance has been proposed. The upper atmosphere state, presumably foregone a strong earthquake, has been modeled by means of switching-on of additional sources of the electric field in the UAM electric potential equation which was solved numerically jointly with all other UAM equations (continuity, momentum and heat balance) for neutral and ionized gases. The efficiency of the proposed mechanism has been investigated by means of model calculations of the ionosphere response to the action of zonal electric field produced by seismogenic sources located at the middle and low latitudes. The results of the corresponding numerical model calculations of the electric field and its effects in the ionospheric F2-layer and plasmasphere have been presented. They have revealed a fine agreement with TEC anomalies observed before strong earthquakes at the middle and low latitudes both in spatial scales and in amplitude characteristics.

Keywords: ионосфера Земли

Printed reference: Zubova Yu.V., Namgaladze A.A. The vibrationally excited molecular nitrogen effects by numarical modelling of the ionospheric F2-layer behaviour during major magnetic storms // Vestnik of MSTU. 2009. V. 12, No 2. P. -.

Electronic reference: Zubova Yu.V., Namgaladze A.A. The vibrationally excited molecular nitrogen effects by numarical modelling of the ionospheric F2-layer behaviour during major magnetic storms // Vestnik of MSTU. 2009. V. 12, No 2. P. -. URL: http://vestnik.mstu.edu.ru/v12_2_n35/articles/23_zubova.pdf.

(In Russian, p.12, fig. 14, tables 1, ref 24, Adobe PDF)