cmp.453-457

Численное моделирование аврорального электроджета во время геомагнитной суббури

М.В. Клименко¹, В.В. Клименко², В.В. Брюханов¹

¹ Калининградский государственный технический университет ² Западное отделение ИЗМИРАН, Калининград

Аннотация. Численное моделирование аврорального электроджета во время геомагнитной суббури выполнено на основе модифицированной глобальной самосогласованной модели системы термосфераионосфера-протоносфера (ГСМ ТИП). Проведены расчеты влияния усиления во время геомагнитных возмущений продольных токов 1-ой зоны или разности потенциалов через полярные шапки, задаваемых в качестве входных параметров модели, на распределение аврорального электроджета. Получены как квазистационарные решения, так и изменения аврорального электроджета во времени в процессе развития геомагнитного возмущения. Показано, что полученные результаты численных расчетов достаточно хорошо согласуются с экспериментальными данными как качественно, так и количественно.

Abstract. Numerical modeling of the auroral electrojet behavior during the geomagnetic substorm has been performed based on the modified Global Self-consistent Model of Thermosphere-Ionosphere-Protonosphere system (GSM TIP). The effect of the enhanced during geomagnetic disturbances Region 1 field aligned currents, as well as the polar cap potential drop difference (which are model inputs), in the auroral electrojet distribution has been calculated. Both quasi-stationary solutions and time evolution of the auroral electrojet during geomagnetic disturbances have been obtained. It has been shown that the simulation results are in a rather good qualitative and quantitative agreement with the observations.

1. Введение

Во время магнитосферных возмущений происходит усиление электрических полей и токов в высокоширотной ионосфере. Эти поля вызывают электромагнитные дрейфы тепловой плазмы в Fобласти ионосферы, которые приводят к изменению ее плотности. Кроме того, электрические поля и токи проникают из высокоширотной ионосферы на средние и низкие широты. Численному моделированию этих процессов и посвящена настоящая работа.

2. Краткое описание модели

Представлены результаты расчетов, выполненных на модифицированной модели ГСМ ТИП, разработанной в ЗО ИЗМИРАН (Namgaladze et al., 1988). Наряду с традиционными блоками модели, а именно, термосферы, нижней ионосферы, F-области ионосферы, внешней ионосферы и протоносферы, в которых рассчитываются основные параметры околоземной тепловой плазмы, в нее, вместо прежнего блока расчета электрических полей динамо и магнитосферного происхождения, включен новый блок, в котором, помимо пространственного распределения потенциала крупномасштабного электрического поля, рассчитывается также плотность зонального тока в ионосфере. В отличие от старого блока, в котором решение трехмерного уравнения, описывающего закон сохранения плотности полного тока в осуществлялось приведением его к двумерному интегрированием по высоте ионосфере, токопроводящего слоя ионосферы с последующим численным интегрированием полученного уравнения в частных производных эллиптического типа, в новом блоке эта процедура осуществляется вдоль силовых линий геомагнитного поля, лежащих в токопроводящем слое ионосферы.

Расчеты проводились самосогласованным образом для равноденственных условий (22 марта 1987 года) при низкой солнечной активности ($F_{10.7} = 76$).

3. Результаты расчетов и обсуждение

На рис. 1 показано рассчитанное распределение в северной и южной полярных шапках потенциала электрического поля, генерируемого как магнитосферными источниками, так и ионосферным динамо. В этом варианте задавались продольные токи 1-ой зоны на геомагнитных широтах $\Phi = \pm 75^{\circ}$, равные 5·10⁻⁸ А/м² для спокойных условий (вверху) и 2·10⁻⁷ А/м² для возмущенных (внизу) и продольные токи 2-ой зоны на геомагнитных широтах $\Phi = \pm 70^\circ$, равные $3 \cdot 10^{-8}$ A/м² для спокойных условий и 1,2·10⁻⁷ А/м² для возмущенных. При этом разность потенциалов через полярную шапку в спокойных условиях составляет 18 кВ в северном полушарии и 12 кВ в южном, а в возмущенных условиях - соответственно 93 кВ и 54 кВ.

Клименко М.В. и др. Численное моделирование аврорального электроджета...

Рис. 1. Распределение потенциала электрического поля в северной (слева) и южной (справа) полярной шапках при заданных продольных токах 1-ой и 2-ой зон в спокойных (вверху) и возмущенных (внизу) условиях

соответствующее распределению потенциала, представленному на рис. 1 деление линейной плотности зонального ток

На рис. 2 показано рассчитанное распределение линейной плотности зонального тока, положительного в восточном направлении, в декартовой геомагнитной системе координат долгота – широта для спокойных (вверху) и возмущенных (внизу) условий, соответствующее распределению потенциала электрического поля, показанному на рис. 1. Сплошными изолиниями здесь и далее показаны положительные токи, штриховыми – отрицательные, пунктирными – нулевые. Шаг между соседними изолиниями 5 А/км. Видно, что в спокойных условиях линейная плотность аврорального электроджета составляет ~10 А/км, восточного экваториального электроджета ~25 А/км и западного ~5 А/км. В возмущенных условиях линейная плотность аврорального электроджета до ~10 А/км при неизменном западном электроджете на экваторе. При этом разрыв Харанга смещается слегка в вечерний сектор. В возмущенных условиях имеет место проникновение восточного тока к экватору в утреннем секторе местного времени и западного из вечернего в дневной, что, по-видимому, и приводит к уменьшению плотности восточного экваториального электроджета к уменьшению плотности восточного экваториального экватору в утреннем секторе местного времени и западного из вечернего в дневной, что, по-видимому, и приводит к уменьшению плотности восточного экваториального восточного (при заданных продольных токах).

На рис. З показано распределение потенциала электрического поля в полярных шапках при заданной на геомагнитных широтах $\Phi = \pm 75^{\circ}$ разности потенциалов через полярные шапки, равной 40 кВ для спокойных условий (вверху) и 120 кВ для возмущенных (внизу) и заданных на геомагнитных широтах $\Phi = \pm 70^{\circ}$ продольных токах 2-ой зоны, равных $3 \cdot 10^{-8}$ А/м² для спокойных условий и $2 \cdot 10^{-7}$ А/м² для возмущенных. Видно, что в возмущенных условиях распределение потенциала становится четырехячеистым, в отличие от двухячеистового в спокойных условиях.

На рис. 4 показано распределение в северном полушарии линейной плотности зонального тока для варианта расчета, представленного на рис. 3. Видно, что в спокойных условиях линейная плотность восточного аврорального электроджета составляет ~30 А/км, западного ~10 А/км, восточного экваториального электроджета ~45 А/км и западного ~10 А/км. В возмущенных условиях линейная плотность восточного аврорального электроджета возрастает до ~105 А/км, западного до ~60 А/км, плотность восточного экваториального электроджета возрастает до ~105 А/км, западного – уменьшается до ~5 А/км. При этом разрыв Харанга, как и в предыдущем случае, смещается слегка в вечерний сектор. В возмущенных условиях имеет место проникновение восточного тока из авроральной зоны к экватору в вечерне-ночном секторе местного времени, что, по-видимому, и приводит к уменьшению плотности западного экваториального электроджета и усилению восточного в данном варианте расчетов (при заданной разности потенциалов через полярные шапки).

Рис. 3. То же, что и на рис. 1, при заданных разности потенциалов через полярные шапки и продольных токах 2-ой зоны

На рис. 5 показана модель суббури, использовавшаяся в наших расчетах, где изображено изменение по UT разности потенциалов через полярные шапки (сплошной линией) и продольных токов 2-ой зоны (штриховой линией). Фаза роста суббури продолжительностью 30 минут сменяется фазой восстановления. Длительность модельной суббури 4 часа.

На рис. 6 показаны рассчитанные распределения в северном полушарии линейной плотности зонального тока в спокойных условиях (левая панель) и во время суббури (правая панель) с 00.30 до 04.00 UT с шагом 30 мин. (распределение линейной плотности зонального тока в 00.00 UT, то есть в момент начала суббури, показано на рис. 4 вверху). Распределение линейной плотности тока в конце фазы роста практически совпадает с представленным выше на рис. 4 внизу. На фазе восстановления токи в авроральной зоне уменьшаются. При этом в отдельные моменты времени (через 1,5 и 2,5 часа после начала суббури) имеет место ослабление восточного экваториального

Рис. 4. То же, что и на рис. 2, соответствующее распределению потенциала, представленному на рис. 3

Рис. 5. Развертка по ∪1 разности потенциалов через полярные шапки (слева) и продольных токов 2-ой зоны (справа) во время модельной суббури

электроджета. Поскольку основным источником экваториального электроджета является термосферный ветер, то, по-видимому, суббуря генерирует волны в нейтральной атмосфере, приводящие к таким изменениям токов на экваторе.

Следует отметить, что согласно экспериментальным данным (*Kamide*, 1991) разрыв Харанга, который определяется как граница между восточным и западным авроральными электроджетами или граница между областями с северным и южным электрическим полями во время суббурь сдвигается в вечерний сектор, что согласуется с полученными нами результатами расчетов (рис. 2, 4). Кроме того, во время суббури происходит значительно больший рост западного аврорального электроджета, чем восточного, что связано с ростом проводимости ионосферы во время суббури, наибольшим именно в области западного электроджета. Поскольку в нашей модели суббури отсутствует изменение проводимости ионосферы за счет высыпания высокоэнергичных частиц, мы получили противоположную картину поведения авроральных токов. Отсюда следует важный вывод о том, что для правильного описания электродинамики высокоширотной ионосферы во время суббурь необходимо учитывать высыпания высокоэнергичных заке высыпания высокоэнергичных высокоэнергичных высокоэнергичных высокоэнергичных высокоэнергичных высокоэнергичных высокоэнергичных и в время суббурь необходимо учитывать высыпания высокоэнергичных заке.

Рис. 6. Рассчитанные распределения линейной плотности зонального тока в северном полушарии в спокойных условиях (слева) и во время суббури (справа) для моментов UT: 00.30, 01.00, 01.30, 02.00, 02.30, 03.00, 03.30 и 04.00 (сверху вниз)

Нами были проведены расчеты всех основных параметров околоземной среды для 19 отдельных станций в обоих полушариях, преимущественно высокоширотных. Наиболее интересные результаты для 8 из них представлены на рис. 7, на котором показаны спокойные (штриховыми линиями) и возмущенные (сплошными линиями) развертки по UT критической частоты F2-слоя ионосферы, foF2, для станций Sondrestrom (Гренландия), Reykjavik (Исландия), EISCAT (Норвегия), Lulea (Швеция), Leningrad (Россия), Kaliningrad (Россия), Jicamarca (Перу) и Scott Base (Антарктида). Видно различие эффектов, вызываемых суббурей на различных станциях. Так, например, на станциях Reykjavik и EISCAT, находящихся во время суббури в утреннем секторе и незначительно отличающихся по геомагнитной широте возмущения имеют разный знак – в Reykjavik отрицательное возмущение, а в EISCAT - положительное. Аналогичная ситуация имеет место на двух среднеширотных станциях, Leningrad и Kaliningrad, отстоящих друг от друга незначительно по геомагнитной широте и находящиеся примерно в одном долготном секторе. На ст. Leningrad модельная суббуря приводит к положительному возмущению foF2, которое через два с небольшим часа после начала суббури сменяется отрицательным, тогда как на ст. Kaliningrad имеет место отрицательное возмущение. На экваториальной станции Jicamarca мы видим небольшое положительное возмущение, а на антарктической станции Scott Base отрицательное возмущение сменяется положительным, которое затем переходит в отрицательное. Для объяснения этих эффектов суббури в foF2 недостаточно привлекать локальные процессы, а следует рассматривать пространственно-временное распределение всех параметров околоземной плазмы.

Рис. 7. Рассчитанные развертки по UT критической частоты F2-слоя ионосферы, foF2, в спокойных условиях (пунктирные кривые) и во время суббури (сплошные кривые) для различных станций

4. Заключение

Таким образом, показано, что данная модель в состоянии описывать распределение потенциала электрического поля и токов в ионосфере Земли как в спокойных условиях, так и во время возмущений. Результаты проведенных расчетов указывают на то, что во время возмущений токи в авроральной ионосфере оказывают влияние на экваториальный электроджет. Отмечается также, что для корректного описания вариаций токов во время суббурь необходимо обязательно учитывать высыпания авроральных высокоэнергичных частиц.

Литература

Kamide Y. The auroral electrojets: Relative importance of ionospheric conductivities and electric fields. *Auroral Physics, Ed. C.-I. Meng, M.J. Rycroft and L.A. Frank*, p.385-399, 1991.

Namgaladze A.A., Korenkov Yu.N., Klimenko V.V., Karpov I.V., Bessarab F.S., Surotkin V.A., Glushchenko T.A., Naumova N.M. Global model of the thermosphere-ionosphere-protonosphere system. Pure and Appl. Geophys. (PAGEOPH), v.127, N 2/3, p.219-254, 1988.