УДК 622.73.764

Закономерности измельчения бедных медно-никелевых руд в барабанных мельницах

А.И. Ракаев, П.А. Шумилов

Горный институт КНЦ РАН

Аннотация. В работе приведены результаты исследований измельчаемости пробы бедной медноникелевой руды, показаны различия в поведении узких классов крупности при стержневом и шаровом помоле, выделены характерные механизмы разрушения этих классов, приведена оценка затрат энергии на измельчение. На основании полученных данных обоснован выбор двухстадиальной схемы измельчения со стержневой мельницей в первой стадии, и шаровой — во второй, для рациональной подготовки руды к флотации.

Abstract. The paper presents the investigation results of grindibility of copper-nickel ore sample, differences in the behavior of narrow grain size categories using rod and ball mill grinding. The characteristic mechanisms of destruction of the categories have been identified; the energy input on grinding has been estimated. Basing on the obtained data the choice of a two-stage scheme of grinding with rod mill at the first stage, and the ball mill at the second one for efficient ore preparation for flotation has been substantiated.

Ключевые слова: измельчение, рудоподготовка, стержневая мельница, шаровая мельница, двухстадиальное измельчение **Key words:** grinding, ore preparation, rod mill, ball mill, two-stage grinding

1. Ввеление

В последнее время наблюдается тенденция к усложнению технологических процессов и повышению затрат на обогащение полезных ископаемых. Это связано в первую очередь с исчерпанием ресурсов, вовлечением в разработку бедных, труднообогатимых и труднодоступных месторождений, а также отвалов. В период глобального финансового кризиса ситуация лишь обострилась. Снизившийся спрос на продукты добычи и переработки полезных ископаемых напрямую влияет на экономическую эффективность технологий обогащения.

Процессы рудоподготовки (дробление, измельчение и грохочение) занимают среди всех обогатительных процессов особое место, являясь наиболее энергоемкими, металлоемкими и трудоемкими. На них, по некоторым данным, приходится до 50 % потерь при обогащении. Таким образом, оптимизация процессов рудоподготовки в целом и измельчения в барабанных мельницах в частности является актуальной научно-технической задачей.

Для исследования закономерностей измельчения в барабанных мельницах в нашей стране традиционно применяется интегральный подход — изучение кинетики измельчения остатка на сите. Данная методика, при ее распространенности и изученности, тем не менее, обладает определенными недостатками. Подобный подход дает мало информации о поведении в процессе помола узких классов крупности. А эта информация зачастую необходима для оценки раскрытия ценного компонента и разработки технологий рудоподготовки, позволяющих достичь оптимальных показателей без переизмельчения и излишнего ошламования.

За рубежом для оценки измельчаемости узких классов крупности используется также матричная модель дробильно-измельчительных процессов (*Broadbent*, *Callcott*, 1956). В России исследователи чаще опираются на кинетическую модель, имеющую в своей основе уравнение кинетики Разумова (*Андреев и др.*, 1959). Используемый нами подход совмещает два вышеупомянутых — базируется на усовершенствованном уравнении Товарова, более точно отображающем характер измельчения в стержневых мельницах (*Ракаев*, 1989), но при этом позволяет определять закономерности сокращения крупности частиц в узких классах крупности, оценить интенсивность раскрытия в них ценных компонентов и установить очередность их вступления в процесс измельчения.

2. Исследование закономерностей измельчения

Используемое в исследованиях модифицированное уравнение кинетики Разумова (в дифференциальной форме) выглядит следующим образом:

$$a(R,t) = dR/dt = C \cdot (R^2/R_0) - kR,$$
 (1)

где R_0 , R — содержание остатка руды на выбранном сите (расчетный класс) в начальный момент времени t_0 и в текущий момент времени t, %; k — относительная скорость измельчения, характеризующая измельчаемость мелких классов остатка в данный момент времени, 1/c; C — коэффициент, характеризующий измельчаемость более крупных классов, 1/c.

Для оценки интенсивности изменения количества ценного компонента (скорости раскрытия) в расчетном классе крупности использовалась формула аналогичная (1):

$$a(\varepsilon,t) = d\varepsilon/dt = C_{\varepsilon} \cdot (\varepsilon^2/\varepsilon_0) - k_{\varepsilon}\varepsilon, \tag{2}$$

где k_{ε} , C_{ε} – коэффициенты, характеризующие удельные скорости (интенсивности) изменения количества ценного компонента в мелких и крупных классах остатка; ε_0 , ε – количество ценного компонента в расчетном классе в начальный и текущий момент времени соответственно, %.

Поведение узких классов крупности исследовалось на примере измельчения бедной медноникелевой руды в стержневой и шаровой мельницах (рис. 1).

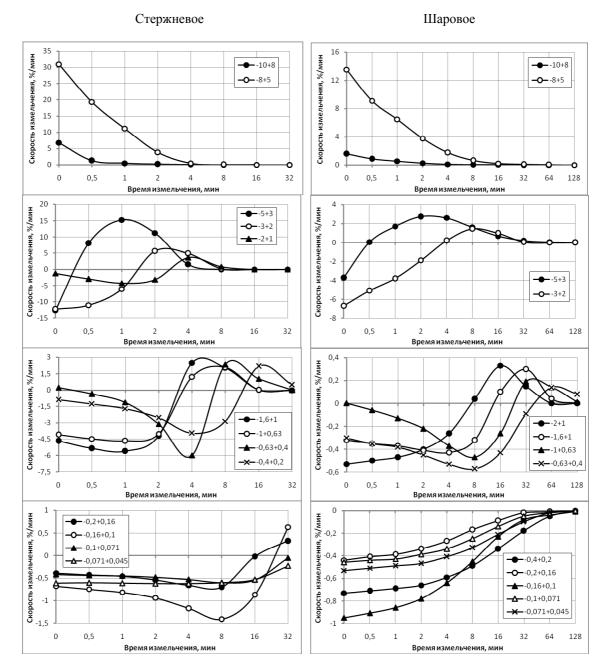


Рис. 1. Скорости измельчения узких классов крупности в стержневой и шаровой мельницах

При стержневом измельчении в начальный период времени (t_H = 0-4 мин) разрушаются частицы только двух самых крупных классов -10+8 мм и -8+5 мм. Скорости их измельчения в начальный момент времени (t_0 = 0 мин) составляют соответственно 6.8 %/мин и 30.9 %/мин. Именно эти классы задают темп стержневого измельчения.

В остальных классах скорости измельчения имеют отрицательные значения. Это свидетельствует о том, что в них в этот период интенсивнее происходит накопление материала за счет продуктов разрушения крупных классов, нежели разрушение. Это относится к классу -5+3 мм, который менее чем через t=0.3 мин вступает в процесс разрушения. Затем в этот процесс вступают следующие классы: -3+2 мм и -2+1 мм. Происходит это в момент исчезновения частиц крупных классов -10+8 мм и -8+5 мм. В этом интервале времени в классах мельче 1.6 мм накопление материала превалирует над процессами разрушения. Время, после которого процесс разрушения начинает превышать накопление в более мелких классах, составляет: -3+2 мм - 1.5 мин; -2+1 мм - 3 мин; -1.6+1 мм и -1+0.63 мм - 2.5 мин, и т.д. Только в классах мельче 0.1 мм на всем интервале времени ($t_K=32$ мин) накопление материала превышает разрушение.

Аналогично происходит разрушение руды и в шаровой мельнице, но его интенсивность гораздо ниже. Здесь крупные классы -10+8 мм и -8+5 мм исчезают только к 16 мин, тогда как в стержневой мельнице это происходит через 4 мин от начала измельчения. В дальнейшем активно разрушается только фракция крупностью -5+3 мм (от t_H = 0.5 мин до t_K = 32 мин). Скорость измельчения этого класса достигает максимального значения около 3 %/мин при t = 2 мин. В то же время в стержневой мельнице эта фракция измельчается со скоростью 15 %/мин при t = 1 мин.

Вопреки ожиданию, в шаровой мельнице частицы мельче 0.4 мм имеют отрицательную скорость на всем интервале времени измельчения ($t_K=128\,$ мин). Начиная с $t=8\,$ мин, когда исчезают самые крупные классы (- $10+8\,$ мм и - $8+5\,$ мм), процесс разрушения активно поддерживается за счет классов промежуточной крупности: - $2+1.6\,$ мм, - $1.6+1\,$ мм и - $1+0.63\,$ мм до $t=64\,$ мин. На конечном интервале времени, начиная с $t=64\,$ мин до $t=128\,$ мин, измельчаются только частицы класса - $1.6+1\,$ мм со скоростью около $0.05\,$ %/мин и класса - $0.63+0.4\,$ мм со скоростью несколько большей ($0.10-0.15\,$ %/мин).

Приведенный анализ измельчаемости узких классов крупности проявляется во всех опытах, и он достаточно убедительно показывает, что почти 50 % времени в шаровой мельнице материал практически не измельчается. В стержневой же мельнице во вторую половину периода измельчения (t=16-32 мин) процесс измельчения поддерживается частицами класса -0.63+0.4 мм и -0.4+0.2 мм, причем наибольшую скорость измельчения имеет класс -0.4+0.2 мм. Скорость разрушения в среднем равна 1.5 %/мин, что на порядок больше, чем при шаровом измельчении во второй половине периода, а также за счет измельчения классов -0.2+0.16 мм и -0.16+0.1 мм (средняя скорость 0.25-0.4 %/мин).

Отчетливо проявляются преимущества стержневой мельницы: к моменту времени t=32 мин выход кл. -0.071 мм достигает 59.26 % (см. табл. 1). В шаровой же мельнице к этому времени содержание кл. -0.071 мм достигает всего 26.79 % (см. табл. 2).

Класс	Выход классов крупности, %									
крупности, мм	0	0.5	1	2	4	8	16	32	64	128
+10	0.66	0.26	0.17	-	-	-	-	-	-	-
-10+8	2.34	0.77	0.69	0.11	-	-	-	-	-	-
-8+5	30.66	16.63	12.68	2.57	-	-	-	-	-	-
-5+3	31.74	31.49	25.46	12.69	0.54	-	-	-	-	-
-3+2	10.10	16.00	18.30	22.29	5.85	-	-	-	-	-
-2+1.6	5.61	7.05	8.25	12.21	12.51	-	-	-	-	-
-1.6+1	5.50	7.73	9.38	13.34	21.14	1.27	-	-	-	-
-1+0.63	3.85	5.71	6.90	10.23	16.95	4.84	-	-	-	-
-0.63+0.4	2.51	3.68	4.82	6.84	11.58	28.09	1.02	-	-	-
-0.4+0.2	3.06	4.18	5.32	7.60	12.24	27.52	29.16	1.12	-	-
-0.2+0.16	0.55	0.81	1.04	1.50	2.47	4.65	9.79	3.68	-	-
-0.16+0.1	1.25	1.71	2.20	3.14	5.15	10.19	19.51	21.20	-	-
-0.1+0.071	0.60	0.88	1.14	1.56	2.64	5.03	9.11	14.74	-	-
-0.071+0.045	0.63	0.92	1.23	1.83	2.99	5.61	10.06	16.44	-	-
-0.045	0.94	2.18	2.43	4.09	5.94	12.80	21.35	42.82	1	-
Прод. класс -0.071 мм	1.57	3.10	3.66	5.92	8.94	18.41	31.41	59.26	-	-

Таблица 1. Кинетика измельчения руды в стержневой мельнице

Таблица 2. Кинетика измельчения руды в шаровой мельнице

V доос	Класс Выход классов крупности, %									
Класс		ı	ı		классов				ı	
крупности, мм	0	0.5	1	2	4	8	16	32	64	128
+10	0.66	0.41	0.37	0.36	0.30	0.21	0.19	0.15	0.12	0.07
-10+8	2.34	1.69	1.14	0.97	0.93	0.75	0.40	0.26	0.06	0.06
-8+5	30.66	20.50	20.09	16.52	12.68	11.47	2.46	2.17	0.74	0.72
-5+3	31.74	31.98	27.77	29.09	23.71	18.78	2.81	1.33	0.81	0.76
-3+2	10.10	14.64	17.95	15.90	15.31	15.55	4.98	1.23	0.72	0.63
-2+1.6	5.61	6.37	5.96	6.21	7.42	7.22	6.28	1.71	0.51	0.92
-1.6+1	5.50	6.49	6.58	7.09	7.90	8.15	9.19	4.57	1.13	1.48
-1+0.63	3.85	4.79	5.24	5.56	6.44	6.65	8.26	7.91	2.66	2.46
-0.63+0.4	2.51	3.34	3.88	4.51	5.32	5.78	15.00	11.34	4.87	5.78
-0.4+0.2	3.06	3.91	4.26	5.24	6.94	8.04	8.58	18.19	17.82	15.09
-0.2+0.16	0.55	0.71	0.82	1.04	1.40	1.94	4.16	5.22	5.99	4.09
-0.16+0.1	1.25	1.66	1.84	2.28	3.39	4.21	10.12	12.28	13.98	11.26
-0.1+0.071	0.60	0.80	0.95	1.20	1.73	2.22	5.49	6.85	7.58	6.96
-0.071+0.045	0.63	0.96	1.04	1.39	2 14	2.70	6.93	8.77	9.53	9.72
-0.045	0.94	1.73	2.12	2.63	4.40	6.32	15.15	18.03	33.49	40.01
Прод. класс -0.071 мм	1.57	2.69	3.16	4.02	6.54	9.02	22.08	26.79	43.02	49.73

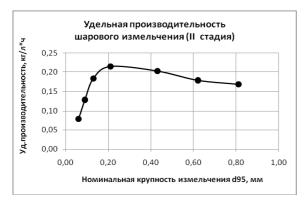
Даже к конечному времени (t = 128 мин) содержание кл. -0.071 мм составляет около 50 %, тогда как для данных руд оптимальная крупность составляет не менее 90 % кл. -0.071 мм. Добиться такой крупности помола возможно путем перехода на двухстадиальное измельчение при использовании стержневой мельницы в I стадии.

Время измельчения руды в мельницах можно выбрать исходя из данных, приведенных на рис. 1. Отчетливо видно, что при t=4 мин частицы крупнее 2 мм практически измельчены. Для стержневой мельницы оптимальная крупность помола руды составляет около 2 мм. Этот режим достигается в момент исчезновения основной массы крупных классов. По времени это составляет около t=5 мин (см. рис. 1). В этот момент в процесс разрушения начинают активно вовлекаться классы руды мельче 2 мм. Благодаря этому режиму успешно достигается основная цель измельчения: содержание продуктивного кл. -0.071 мм в продукте конечного измельчения (разгрузке шаровой мельницы) составляет более 90 %. Время достижения данной крупности составляет t=128 мин. При этом в I стадии используется стержневая мельница (t=5 мин), в которой руда измельчается до крупности -2 мм (табл. 3).

Таблица 3. Результаты двухстадиального измельчения

	Выход классов крупности, %								
Класс	Исх. руда	I стадия			I	І стадия	A		
крупности, мм	0	5	2	4	8	16	32	64	128
+10	0.66	-	-	-	-	-	-	-	-
-10+8	2.34	-	ı	-	-	-	-	-	-
-8+5	30.66	-	ı	ı	-	-	-	-	ı
-5+3	31.74	-	ı	ı	-	ı	1	-	ı
-3+2	10.10	-	ı	•	-	•	•	-	•
-2+1.6	5.61	1.50	1.10	0.59	-	-	-	-	-
-1.6+1	5.50	14.29	9.77	3.73	0.63	-	-	-	-
-1+0.63	3.85	24.50	20.91	13.87	3.79	-	-	-	ı
-0.63+0.4	2.51	16.78	18.25	20.51	13.19	1.27	-	-	-
-0.4+0.2	3.06	17.28	19.61	24.18	30.74	22.07	3.43	-	-
-0.2+0.16	0.55	3.07	3.56	4.68	6.63	8.98	5.00	1.33	-
-0.16+0.1	1.25	6.73	7.83	9.72	13.19	19.53	19.98	9.48	3.21
-0.1+0.071	0.60	3.41	3.88	4.68	6.76	9.04	13.42	12.64	6.23
-0.071+0.045	0.63	3.65	4.27	5.10	7.58	10.37	15.96	18.76	16.24
-0.045	0.94	8.80	10.81	12.92	17.49	28.74	42.21	57.80	74.32
Прод. класс -0.071 мм	1.57	12.46	15.08	18.02	25.06	39.11	58.18	76.55	90.56

Как видно из табл. 3, содержание кл. -0.071 мм более 90 % в конечном продукте (разгрузке шаровой мельницы) достигается за то же время (t = 128 мин), при котором при одностадиальной схеме содержание кл. -0.071 мм составляет всего 50 % (см. табл. 2).


Приведенные результаты убедительно показывают, что только переход на двухстадиальное измельчение, при котором полностью проявляются преимущества стержневой мельницы (первоочередное разрушение крупных кусков и подготовка материала к измельчению в шаровой мельнице), позволяет достичь требуемых результатов.

Выполнена сравнительная оценка энергозатрат при одностадиальном (табл. 4) и двухстадиальном измельчении.

Время	Энергозатраты на измельчение, кВт*ч/т					
измельчения, мин	стержневое	шаровое				
T=0.5	40.27	29.66				
T = 1	58.92	41.73				
T = 2	56.61	54.18				
T = 4	66.86	53.55				
T = 8	58.51	71.40				
T = 16	66.03	51.85				
T=32	68.30	84.30				
T = 64	-	102.60				
T = 128	-	176.61				

Таблица 4. Энергозатраты при одностадиальном измельчении

При двухстадиальном измельчении для первой стадии оценивались энергозатраты на измельчение исходной руды до содержания 90 % крупности -2 мм (в стержневой и шаровой мельницах). Для стержневой мельницы они составили 7.84 кВт*ч/т (T=5 мин), для шаровой -30.22 кВт*ч/т (T=32 мин). При этом энергозатраты на измельчение в течение 128 минут в шаровой мельнице после стержневой составили 131.81 кВт*ч/т, а на измельчение в течение того же периода времени после шаровой – 336.63 кВт*ч/т. Кривые удельной производительности и энергозатрат приведены на рис. 2.

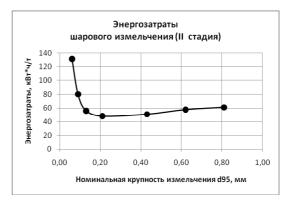


Рис. 2. Показатели шарового измельчения во II стадии, при использовании на I стадии стержневой мельницы

Таким образом, отчетливо видна эффективность схемы двухстадиального измельчения с использованием в первой стадии стержневой мельницы. За меньшее время и с меньшими затратами энергии исходная руда доводится до крупности более 90 % класса -2 мм. Дальнейшее измельчение руды в шаровой мельнице позволяет наработать при минимальных энергозатратах необходимое для флотации количество класса -0.071 мм (90.56 % против 49.73 %, см. табл. 2 и 3).

3. Заключение

Проведенные исследования продемонстрировали различия в измельчаемости узких классов бедной медно-никелевой руды в шаровой и стержневой мельницах. Показано, что в стержневой мельнице в первую очередь разрушаются крупные куски, и скорость измельчения в целом заметно выше, чем в шаровой.

Выделены три основные группы классов: в крупных фракциях происходит преимущественно разрушение руды, в мелких – накопление, в промежуточных классах крупности кривые скоростей

измельчения имеют экстремальный характер. В этих классах накопление сменяется разрушением (на графике – переход из отрицательной области значений в положительную область), четко прослеживается последовательное вовлечение узких классов в процесс измельчения.

По результатам исследований, можно сделать вывод, что стержневое измельчение представляется более эффективным способом подготовки руды к окончательному измельчению руды перед флотацией. Однако даже стержневой помол не дает возможности быстро довести руду до требуемого содержания продуктивного класса. В связи с этим, целесообразным представляется использование двухстадиального измельчения со стержневой мельницей на первой стадии, позволяющей быстро разрушить крупные куски, и дальнейшим доведением руды до нужной крупности в шаровых мельницах.

Литература

Broadbent S.R., Callcott T.G. A matrix analysis of processes involving particle assemblies. *Phil. Trans. R. Soc. Lond.*, Ser.A, v.249, p.99-123, 1956.

Андреев С.Е., Товаров В.В., Перов В.А. Закономерности измельчения и исчисление характеристик гранулометрического состава. *М., Металлургиздат*, с.284-292, 1959.

Ракаев А.И. Оптимизация рудоподготовки при гравитационном обогащении. Л., Наука, с.16-21, 1989.