УДК 621.039.75

Оценка возможности образования критической массы в контейнере с отработанным ядерным топливом

В.А. Наумов¹, Е.В. Караваева^{1,2,3}

¹ Горный институт КНЦ РАН ² Апатитский филиал МГТУ, кафедра горного дела ³ Горный факультет Кольского филиала ПетрГУ, кафедра горного дела и обогащения

Аннотация. Представлены методология и результаты оценки критических масс стальных обводненных контейнеров с деградировавшим отработанным ядерным топливом (ОЯТ) из реакторов АПЛ 1-го поколения. Принятые исходные данные соответствуют аварийным контейнерам типа 11, хранящимся на бывшей береговой базе ВМФ в пос. Гремиха.

Abstract. The paper presents the methodology and assessment results of critical masses of steel watered containers with degraded SNF from nuclear submarine reactors of the 1st generation. Basic obtained data correspond to emergency containers of type 11 stored in the former Navy coastal base in Gremikha.

Ключевые слова: отработавшее ядерное топливо, деградация, обводненный контейнер, математическая модель, программа 3D КРАТЕР, критическая масса, обращение ОЯТ, ядерная безопасность

Key words: spent nuclear fuel, degradation, watered container, mathematical models, 3D KRATER program, critical mass, SNF management, nuclear risk

1. Введение

Хранение отработанного ядерного топлива (ОЯТ) на бывших береговых базах Северного флота в губе Андреева и пос. Гремиха в Мурманской области представляет серьезную радиационную опасность для окружающей среды. Большая часть отработавших ресурс в судовых реакторных установках (РУ) Северного флота отработанных тепловыделяющих сборок (ОТВС) хранится либо в железобетонных сооружениях, либо в стальных контейнерах на площадке временного хранения радиоактивных отходов.

Особенность хранения ОЯТ в Северном регионе заключается в следующем:

- большая часть топлива находится в регионе длительное время (~30-35 лет), многократно превышающее нормативный срок хранения;
- значительная часть ОТВС находится в аварийном состоянии.

Уникальным по степени несоответствия нормам по безопасности следует считать хранение ОЯТ в контейнерах старой конструкции в пос. Гремиха, размещенных на открытой площадке хранения твердых радиоактивных отходов. Вследствие неблагоприятных климатических условий и старения материалов некоторые контейнеры потеряли герметичность, и через неплотности крышек во внутреннюю полость контейнера с ОТВС проникает влага. В свою очередь, появление воды в контейнерах усиливает процессы коррозии и разрушения топливных сборок с деградацией топливной композиции. В результате этих процессов происходит выкрашивание топливной композиции с возможным образованием аморфной массы и материалов конструкций ОТВС, что при определенных условиях может привести к образованию критической массы (*Макаров и др.*, 2007).

В течение 2008-2009 гг. из поселка Гремиха вывезено и отправлено для переработки на ПО "Маяк" около 600 ОТВС. На сегодняшний день в Гремихе осталось 250 ОТВС (в основном дефектных) с водо-водяных реакторов из ~ 850 ОТВС хранившихся здесь в свое время в 107 контейнерах типа 6 и 9-ти контейнерах типа 11 (*Макаров и др.*, 2007; *Киреева*, 2009).

Еще в 2004 г. ведущими специалистами РНЦ "Курчатовский институт" на международном научном семинаре "Научные и технические проблемы обеспечения безопасности при обращении с ОЯТ и РАО утилизируемых АПЛ и НК с ЯЭУ", проходившем в Москве, в докладе "Состояние и первоочередные предложения по реабилитации радиационно-опасного объекта в БТБ в п. Гремиха" представлена аргументация качественного характера о ядерной опасности хранения и обращения с ОЯТ в случае его хранения в контейнерах типа 11 (с 11 ОТВС) на бывшей береговой технической базе ВМФ в п. Гремиха.

В статье представлены результаты расчетно-теоретического исследования условий образования критической массы во внутренней полости обводненного контейнера типа 11 с деградировавшим ОЯТ.

2. Объект исследования

Контейнер типа 11, изображенный на рис. 1, предназначен для установки и перевозки одного чехла типа 22 или 22 М (1), в котором размещаются 7 ОТВС (5). Контейнер представляет собой металлическую обечайку (4) с боковой стенкой толщиной 327 мм, днищем толщиной 280 мм, прокладки (2) и крышки (3). Изготовлен контейнер из углеродистой стали Ст. 20 (*Нильсен и др.*, 1996). Чехол – это сварная конструкция, состоящая из верхнего и нижнего кожухов, цилиндрической трубной части, дна и пробки. ОТВС размещаются в 7 трубах диаметром 60×3 мм. Чехол герметично закрывается пробкой. Однако отмечены случаи, когда в контейнеры помещались ОТВС без чехла и в большем количестве, чем в стандартном случае, а именно 11 ОТВС. В этих контейнерах в случае разрушения топливных сборок при наличии воды и перераспределении топлива и воды становится реальным образование локальной критмассы (*Макаров и др.*, 2007).

Тепловыделяющая сборка (TBC) состоит из двух составных частей: втулки с твэлом с длиной активной части 900-1000 мм и трубывтулки (захватная часть). В ТВС использовался твэл с оболочкой из нержавеющей стали толщиной 0,27-0,3 мм (*Макаров и др.*, 2007).

Предполагается, что внутри тепловыделяющей сборки размещается 60 твэлов. При этих принятых исходных данных определены диаметры топливного сердечника 2,8 мм и твэла 3,6 мм (с учетом оребрения). В центре ТВС предполагается технологическая трубка диаметром 5 мм. Шаг размещения твэл в канале равен ~5,5 мм.

Рис. 1. Общий вид контейнера типа 11

В качестве топливной композиции рассматриваются дисперсия UO_2+A1 или интерметаллид UAl_3+A1 . Массовый состав ОЯТ внутри контейнера для случая, когда в нем размещается 11 ОТВС, показан в табл. 1. Изотопный состав был получен с помощью программы КРАТЕР, используя робастную модель реактора ВМ-А, описанную в монографии (*Мельников и др.*, 2003). При этом предполагалось, что энерговыработка активной зоны составляет 11,25 ГВт суток, а обогащение урана изотопом ²³⁵U 21 %.

			=		
Элемент	BM-A (11,25)	Элемент	BM-A (11,25)	Элемент	BM-A (11,25)
²³⁵ U	2800	²³⁹ Pu	69,1	¹⁵¹ Sm	0,553
²³⁶ U	133	²⁴⁰ Pu	8,42	Шлаки (^{235,238} U)	601,4
²³⁷ Np	6,9	²⁴¹ Pu*	2,24	Шлаки (^{239,241} Pu)	25,1
²³⁸ U	13204	¹⁴⁹ Sm	0,131	Элемент топливной матрицы	5162 (Al)
				или композиции	

Таблица 1. Массовый состав (грамм) отработавшего ядерного топлива из периферийных областей активных зон РУ ВМ-А в контейнере типа 11 (11 ОТВС); расчет по программе КРАТЕР

* на момент окончания эксплуатации.

3. Методика

В качестве методики применена верифицированная реакторная программа КРАТЕР с 3-х мерной версией в х, у, z - геометрии. Трехмерная диффузионная программа 3D КРАТЕР используются в ряде российских научно-исследовательских организаций для нейтронно-физических расчетов реакторов различного типа. Программа имеет алгоритм совместного решения уравнений кинетики выгорания и уравнений реактора и позволяет описывать выгорание и наработку изотопов с учетом пространственной неоднородности спектра нейтронов. В программу КРАТЕР включена подпрограмма решения уравнения переноса нейтронов в элементарной ячейке альбедным методом, которая позволяет учитывать гетерогенные эффекты при определении констант (макроскопических нейтронных сечений) в уравнении реактора (*Наумов и др.*, 1996).

Однако особенности геометрических параметров и материального состава контейнера TK-11 обусловили необходимость валидации программы. Поэтому была выполнена работа по валидации программы 3D КРАТЕР с учетом особенностей контейнера TK-11. Для тестирования программы КРАТЕР в задачах критичности были взяты результаты расчетов по программе MCNP, выполненные научным сотрудником Объединенного института энергетических и ядерных исследований – Сосны Белорусской Национальной Академии Наук Тетеревой Н.А.

Модель для проведения тестовых расчетов представляла собой канистру с однородной смесью топлива и воды (активная зона) высотой 50 см и радиусом 13,1 см со стальной стенкой толщиной 0,6 см, окруженную со всех сторон стальными отражателями толщиной 30 см. Материал отражателя – углеродистая сталь плотностью 7,85 г/см³. Изотопный состав топлива в канистре соответствует среднему содержанию изотопов в 7-ми ОТВС из реактора ВМ-А и может быть получен по данным табл. 1 нормировкой на коэффициент 7/11.

Расчетные области в используемой версии 3D КРАТЕР представлялись набором параллелепипедов. Преобразование цилиндрических областей в параллелепипеды осуществлялось при условии сохранения объемов.

Список рассматриваемых элементов в составе отработавшего ядерного топлива ограничен изотопами, которые оказывают наиболее сильное влияние на размножение нейтронов. Это делящиеся ²³⁵U, ²³⁹Pu, а также сильно поглощающие нейтроны актиниды ²³⁶U, ²³⁷Np, ²³⁸U, осколки деления ¹⁴⁹Sm, ¹⁵¹Sm.

Результаты тестовых расчетов представлены в табл. 2. Как видно из таблицы, программа 3D КРАТЕР удовлетворительно описывает критичность гомогенной уран-водной системы малых размеров со стальными отражателями.

Метод	Программа МСПР	Программа 3D КРАТЕР			
$K_{ m b} _{\phi \phi}$	$1,03856 \pm 0,00018$	1,04083			

Таблица 2. Валидация трехмерной программы 3D КРАТЕР

4. Результаты исследования

Для изучения нейтронно-физических процессов в контейнере были разработаны три модели контейнера тип 11 с одиннадцатью ОТВС внутри без чехла.

Первая модель (гомогенный случай) – представляет собой стальной контейнер типа 11 (см. рис. 2), внутри которого находится однородная смесь деградировавшего ОЯТ из РУ ВМ-А с водой, представляющая собой активную зону реактора. Нижний торцевой отражатель образуется днищем контейнера толщиной 28 см. В качестве верхнего торцевого отражателя принят слой воды толщиной 20 см. Предположено, что все топливо и конструкционные материалы полностью прокорродировали. По причине слабой растворимости в смеси не учитывались гидроокиси железа и алюминия, образующиеся при коррозии материалов ТВС.

Рис. 2. Расчетная модель контейнера типа 11

Результаты расчетов эффективного коэффициента размножения нейтронов $K_{3\phi\phi}$ в зависимости от высоты активной зоны показаны на рис. 3. Видно, что начиная от высоты 31 см до 78 см наблюдается превышение $K_{3\phi\phi}$ над единицей при максимальном значении 1,043 при $h \approx 50$ см.

Таким образом, высота смеси топлива с водой, равная 31 см, соответствует критическому состоянию контейнера. При этом в контейнере концентрация ²³⁵U в смеси составляет 190 г/литр, а всего содержится 2800 грамм ²³⁵U, что является критической массой. При больших высотах, то есть при большем разбавлении топлива в смеси, когда $K_{3\phi\phi} \ge 1 + \beta_{3\phi\phi}^* = 1,007$, состояние контейнера соответствует критичности на мгновенных нейтронах, или спонтанной цепной реакции.

Сделанное предположение о полном разрушении ТВС является весьма консервативным, поэтому рассматривалась вторая – гетерогенная модель, в которой топливо в результате коррозии разрушено частично. Конструктивно ТВС сохраняют свою форму и размещаются внутри контейнера по треугольной решетке с постоянным шагом 7,06 см. Таким образом, активная зона гетерогенной модели представляет собой область с укороченными кассетами и переменной высотой, зависящей от доли разрушенного объема ТВС. В межкассетном пространстве находится смесь воды и деградировавшего топлива. Степень коррозионного разрушения топливной части ТВС вариьировалась от 0 до 44 %. Продукты коррозии конструкционных материалов в межкассетном пространстве, как и в первой модели, не учитывались.

На рис. 4 представлены результаты расчетов коэффициента размножения нейтронов от высоты неразрушенной части ТВС в контейнере (или от степени деструкции топлива). Как видно из рис. 4, во всем диапазоне рассматриваемых высот ТВС, эффективный коэффициент размножения нейтронов не превышает значение 0,995, и система находится в подкритическом состоянии.

С помощью третьей модели изучается влияние на размножение нейтронов изменения шага размещения ТВС внутри контейнера, что может случиться, допустим, при падении и качении контейнера по наклонной плоскости в случае аварии при перевозке. В этом случае, в центре контейнера образуется

^{*} $?_{3\phi\phi}$ – эффективная доля запаздывающих нейтронов при делении ядер ²³⁵U, ²³⁸U, ²³⁹Pu.

полость, заполненная смесью воды и деструктировавшего топлива, а шаг размещения ТВС при этом изменяется (уменьшается с ростом радиуса полости).

На рис. 5 представлена зависимость $K_{3\phi\phi}$ от радиуса центральной полости для случая, когда высота неразрушенной части ТВС составляет 50 см (деструкция топлива составляет 44 %). Начиная с радиуса полости ~ 2,7 см коэффициент размножения нейтронов превышает единицу, а при радиусе 6 см достигает значения 1,025, что однозначно следует квалифицировать как ядерно-опасное состояние системы.

Следует отметить, что критические или близкие к критическим состояния, имеют место только в обводненном состоянии контейнера, а в сухом контейнере $K_{3\phi\phi}$ не превышает 0,472. Поэтому универсальным решением обеспечения ядерной безопасности контейнеров с ОЯТ является удаление из них воды.

Рис. 3. Размножающие свойства контейнера тип 11 с гомогенной смесью ОЯТ+H₂O во внутренней полости контейнера (активной зоне); программа 3D КРАТЕР

Рис. 4. Зависимость коэффициента размножения нейтронов от высоты неразрушенной части ТВС в контейнере ТК-11 с ОЯТ из РУ АПЛ "Ноябрь"; расчет по программам 3D КРАТЕР и РИТМ

5. Выводы

Разработана и верифицирована упрощенная методология расчета размножающих свойств обводненных металлических контейнеров с отработавшим ядерным топливом из реакторов АПЛ 1-го поколения, хранящегося на бывшей береговой технической базе ВМФ в пос. Гремиха.

Получена количественная оценка ядерной опасности обращения с аварийными контейнерами типа 11 с деградировавшей топливной композицией в ТВС, подтверждающая опасения специалистов РНЦ "Курчатовский институт" о возможности образования локальных критических масс во внутренней полости контейнера.

Из результатов выполненных исследований следует, что обеспечение ядерной безопасности контейнеров с ОТВС может быть достигнуто при удалении воды из контейнеров и дальнейшем хранении их в осушенном состоянии.

Литература

- Киреева А. Росатом ведет политику абсолютной закрытости. URL: http://www.bellona.ru/articles_ru/ articles_2009/1246621871.7
- Макаров В.И., Павлов В.А., Пономарев-Степной Н.Н., Самарин Е.Н., Степеннов Б.С., Хлопкин Н.С., Усатый А.Ф. Состояние и первоочередные предложения по реабилитации радиационно-опасного объекта в БТБ в п. Гремиха. Мат. междун. науч. семинара "Научные и технические проблемы обеспечения безопасности при обращении с ОЯТ и РАО утилизируемых АПЛ и НК с ЯЭУ". М., Изд-во "Комтех-Принт", с.404-426, 2007.
- **Мельников Н.Н., Конухин В.П., Наумов В.А., Амосов П.В., Наумов А.В., Катков Ю.Р.** Отработавшее ядерное топливо судовых энергетических установок на Европейском севере России. В 2 ч. *Апатиты, КНЦ РАН*, с.128, 142, 2003.
- Нильсен Т., Кудрик И., Никитин А. Северный флот. Потенциальный риск радиоактивного загрязнения региона. Доклад объединения "Беллуна" № 2. Осло, Изд-во "a.s. Jon. Nordahl trykken", с.144-146, 1996.
- Наумов В.А., Рубин И.Е., Днепровская Н.М. Программный комплекс КРАТЕР для расчета нейтроннофизических характеристик тепловых ядерных реакторов. Препринт ИПЭ-14. Минск, Сосны: ИПЭ АНБ, 39 с., 1996.